

■ TECHNICAL NOTES

1. General Description of Aluminum Electrolytic Capacitors

1-1 Principle of Capacitor Construction

The principle construction of a parallel plate capacitor is shown in Fig.1. When a voltage V is applied between the conducting electrodes placed opposite to each other, a certain amount Q of electric charge proportional to the voltage can be stored on the surfaces of the dielectric. The proportional constant is called capacitance C , designating the ability of a capacitor to store energy in an electric field.

$$Q=C \cdot V$$

Q: Charge (C)

V: Voltage (V)

C: Capacitance (F)

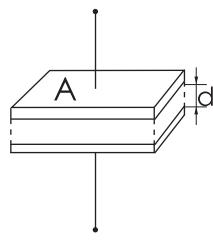


Fig. 1

The capacitance C of capacitor can be expressed by the following equation:

$$C = \epsilon_0 \cdot \epsilon \cdot A/d$$

ϵ : dielectric constant

ϵ_0 : dielectric constant in vacuum ($= 8.85 \times 10^{-12} \text{ F/m}$)

A: electrode area [m^2]

d: electrode distance [m]

The dielectric constant of an aluminum oxide layer is 7 to 8. Larger capacitances can be obtained by enlarging the electrode area A or by reducing the distance d .

Table 1 shows the dielectric constants of typical dielectrics used in capacitors. In many cases, capacitor names are related to their dielectric material used, for example, aluminum electrolytic capacitor, tantalum capacitor, etc.

Table 1

Dielectric	Dielectric Constant	Dielectric	Dielectric Constant
Aluminum oxide film	7 to 8	Porcelain(ceramic)	10 to 120
Mylar	3.2	Polypropylene	2.2
Mica	6 to 8	Tantalum oxide film	10 to 20

Aluminum electrolytic capacitors offer large volumetric capacitance values, because the anode electrode's surface is roughened by electrochemical etching, enlarging its area by factor of 20~100 compared to plain foil, and also because the dielectric layer is very thin (1.4 nm/V).

The schematic cross section of an aluminum electrolytic capacitor is shown in Fig. 2

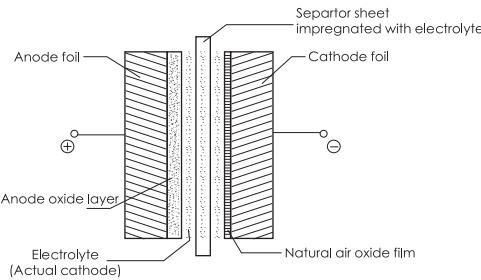


Fig. 2

1. 铝电解电容器的基本概要

1-1. 电容器的结构原理

平行板电容器的基本结构原理可以用图1-1来描述。

当一个电压V施加在彼此正对的两块导电极板两端时,与电压成正比的电荷量Q将被储存在电介质的表面。这个用来标称电容器在电场中储能能力的比例常数被称作容量C。

$$Q=CV$$

Q: 电量 (C)

V: 电压 (V)

C: 电容量 (F)

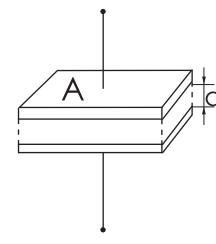


图 1

电容器的容量可以用以下公式来表示:

$$C = \epsilon_0 \cdot \epsilon \cdot A/d$$

ϵ : 介电常数

ϵ_0 : 真空中的介电常数 ($= 8.85 \times 10^{-12} \text{ F/m}$)

A: 极板面积 [m^2]

d: 极板距离 [m]

铝氧化膜的相对介电常数为7~8, 要想获得更大的电容, 可以通过增加表面积A或者减少其厚度d来获得。

表1-1列出了电容器中常用的几种典型介质的相对介电常数, 在很多情况下, 电容器的命名通常是与介质所使用的材料相关的, 例如: 铝电解电容器、钽电容器等。

表 1

介质	相对介电常数	介质	相对介电常数
铝氧化膜	7~8	陶瓷	10~120
薄膜树脂	3.2	聚丙烯	2.2
云母	6~8	钽氧化膜	10~20

电容器的电极表面通过电化学腐蚀变得粗糙, 从而使面积比光箔扩大了20~100倍, 同时电介质层的厚度非常小 (1.4 纳米/伏), 因此铝电解电容器可以提供非常大的体积容量。

图1-2是铝电解电容器的切面示意图。

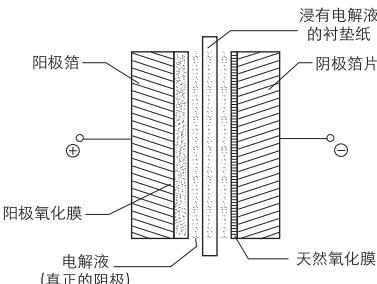


图 2

1-2 Equivalent Circuit of the Capacitor

The electrical equivalent circuit of the aluminum electrolytic capacitor is given in Fig.3

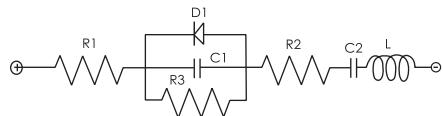
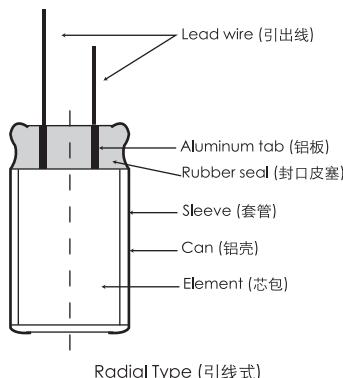


Fig. 3

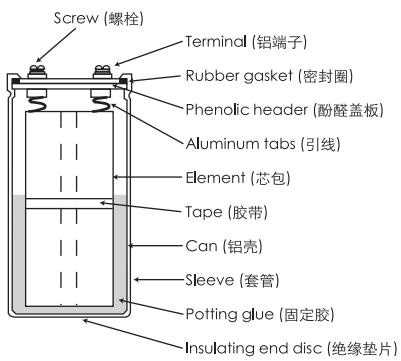
R1: Resistance of terminal and electrode

R2: Resistance of anode oxide layer and electrolyte

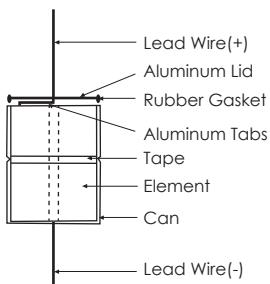
R3: Insulation resistance because of defective anodic oxide layer

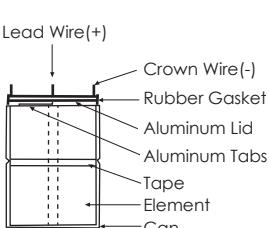

D1: Oxide semiconductor of anode foil

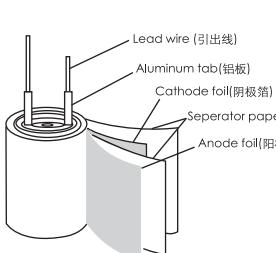
C1: Capacitance of anode foil


C2: Capacitance of cathode foil

L: Inductance caused by terminals, electrodes, etc.


1-3 Structure of aluminum electrolytic capacitor


Radial Type (引线式)


Screw Type-glue fixing (螺栓式-固定胶固定)

Axial Type (轴向式)

Crown Type (皇冠式)

Construction of Element (芯包展开图)

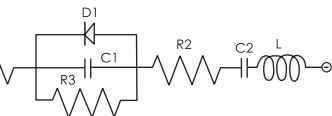
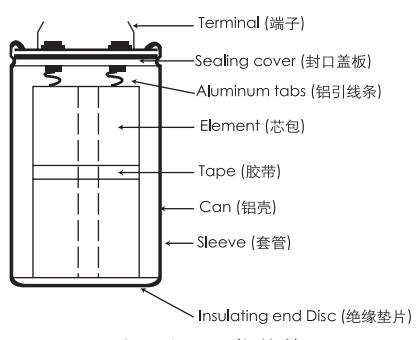


图 3

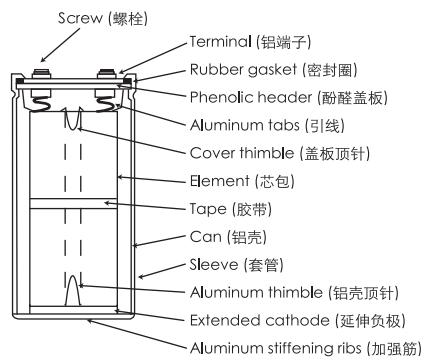
R1: 电极和引出端子的电阻

R2: 阳极氧化膜和电解质的电阻

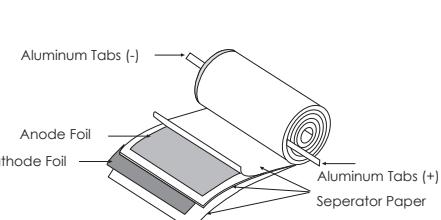
R3: 损坏的阳极氧化膜的绝缘电阻


D1: 具有单向导电性的阳极氧化膜

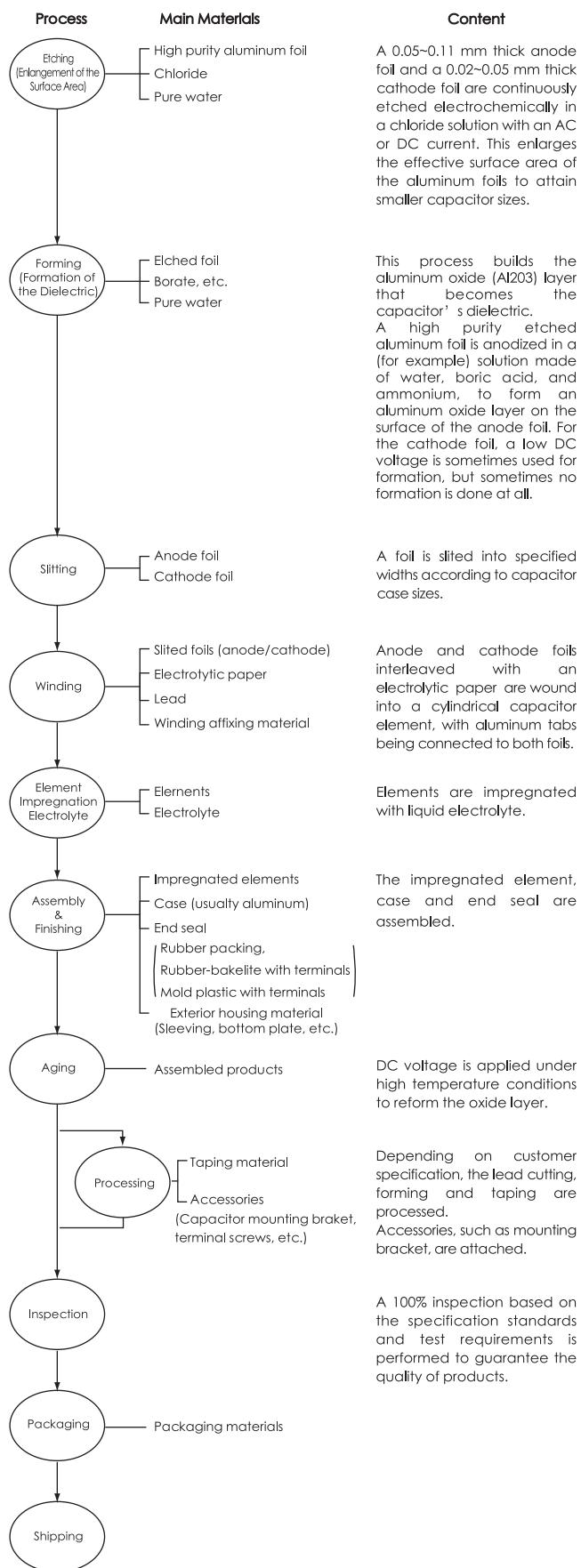
C1: 阳极箔的容量


C2: 阴极箔的容量

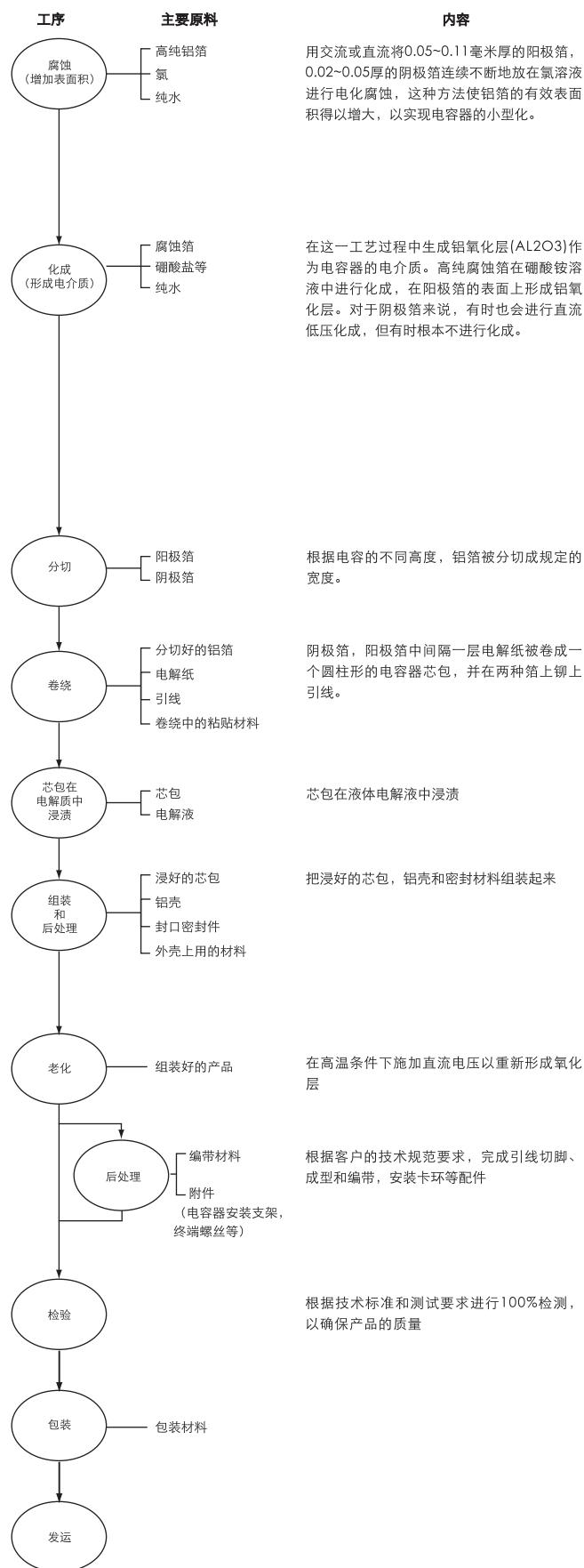
L: 电极及引线端子等所引起的等效电感量


1-3 铝电解电容器的结构

Snap-in Type (焊针式)



Screw Type-thimble fixing (螺栓式-顶针固定)



Structure of Element (轴向芯包展开图)

1-4 Manufacturing process of aluminum electrolytic capacitors

1-4 铝电解电容器制造流程

1-5 Basic parameters and terms

1-5-1 Capacitance:

The capacitance of the dielectric portion of the anode aluminum foil can be calculated with the following formula :

$$C_a = 8.855 \times 10^{-8} \frac{\epsilon \cdot A}{d} \text{ (uF)}$$

The cathode foil capacitance C_c depends on the dielectric properties of the oxide layer which was either deposited by a forming voltage or which grew naturally during storage (typically, the voltage proof of the cathode oxide layer is 1V or less). According to the construction of aluminum electrolytic capacitors, C_a and C_c are connected in series. Therefore, the total capacitance can be determined by the following formula:

$$C = \frac{C_a \times C_c}{C_a + C_c}$$

The standard capacitance tolerance is 20%(M); however, capacitors with a capacitance tolerance of 10%(K), etc. are also manufactured for special usage. The capacitance of aluminum electrolytic capacitors changes with temperature and frequency of measurement, so the standard has been set to a frequency of 120Hz and temperature of 20°C.

1-5-2 Dissipation factor (Tan δ)

The $\tan \delta$ is the ratio of the resistive component (R_{ESR}) to the capacitive reactance ($1/\omega C$) in the equivalent series circuit.

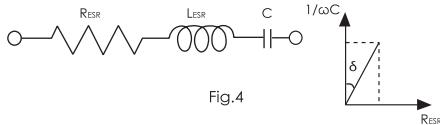


Fig.4

$$\tan \delta = R_{ESR} / (1/\omega C) = \omega C R_{ESR}$$

where : $R_{ESR} = ESR$ at 120Hz

$$\omega = 2\pi f$$

$$f = 120Hz$$

The $\tan \delta$ shows higher values as a measuring frequency increases and a measuring temperature decrease.

1-5-3 Equivalent series resistance (ESR)

The equivalent series resistance (ESR) represents all of the ohmic losses of the capacitor. In the equivalent circuit, it is connected in series with the capacitance. The ESR originates from the ohmic resistances of the electrode foils, the electrolyte, the leads and each internal connection.

The ESR declines with increasing temperature, and also declines steadily with increasing frequency at low frequencies .

1-5-4 Impedance (Z):

The impedance is the resistance which opposes the flow of alternating current at a specific frequency. It is related to capacitance (C) and inductance (L) in terms of capacitive and inductive reactance, and also related to the ESR. It is expressed as follows:

$$Z = \sqrt{ESR^2 + (X_L - X_C)^2}$$

$$\text{Where: } X_C = 1/\omega C = 1/2\pi f C$$

$$X_L = \omega L = 2\pi f L$$

1-5 基本参数和术语

1-5-1 电容量

阳极箔电介质部分的容量可以用下列公式进行计算：

$$C_a = 8.855 \times 10^{-8} \frac{\epsilon \cdot A}{d} \text{ (uF)}$$

阴极箔的容量 C_c 决定于氧化膜介质的特性，阴极箔的氧化膜可由电压化成生成，或者储存期间自然生长而成（通常阴极箔的氧化膜耐压小于1V）。根据铝电解电容器的结构， C_a 和 C_c 是串联在一起的，因此，电容器的总容量可用下列公式得出：

$$C = \frac{C_a \times C_c}{C_a + C_c}$$

标准的容量允许公差为 $\pm 20\%$ (M)，不过，诸如公差为 $\pm 10\%$ (K) 等特殊用途的电容器也是可以生产的。铝电解电容器的容量会随测试温度和频率而变化，因此，设定测试的标准条件为 120Hz, 20 °C。

1-5-2 损耗角正切 (Tan δ)

在等效电路中，等效串联电阻 ESR 同容抗 $1/\omega C$ 之比称之为 $\tan \delta$ 。

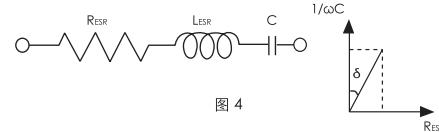


图 4

$$\tan \delta = R_{ESR} / (1/\omega C) = \omega C R_{ESR}$$

其中： $R_{ESR} = ESR$ (120 Hz)

$$\omega = 2\pi f$$

$$f = 120Hz$$

$\tan \delta$ 随着测量频率的增加而变大，随测量温度的下降而增大。

1-5-3 等效串联电阻 (ESR)

等效串联电阻 (ESR) 是表征电容器全部欧姆损耗的量值。在等效电路中，它与容量串联。等效串联电阻的欧姆电阻来自于电极箔、电解液、引线的电阻及它们之间的连接电阻。

ESR 随温度上升而下降，在低频区也随频率的上升而降低。

1-5-4 阻抗 (Z) :

在特定的频率下，阻碍交流电通过的电阻就是所谓的阻抗 (Z) 。它与容量和电感所对应的容抗和感抗有关，也与等效串联电阻 ESR 有关。具体表达式如下：

$$Z = \sqrt{ESR^2 + (X_L - X_C)^2}$$

$$\text{其中: } X_C = 1/\omega C = 1/2\pi f C$$

$$X_L = \omega L = 2\pi f L$$

A typical impedance-versus-frequency curve is shown below. It takes on its minimum value at the self-resonant frequency, and the impedance is equal to the ESR at that frequency.

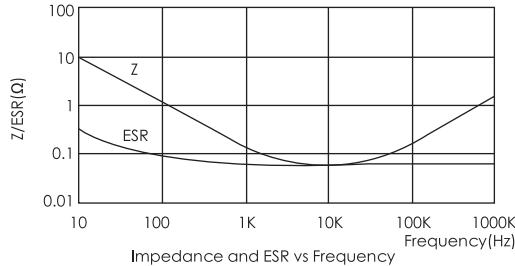


Fig.5

1-5-5 Leakage current:

Leakage Current is the DC current flowing through the capacitor with the rated voltage applied. The value of leakage current depends on the voltage applied, the charging period and capacitor temperature. The leakage current shows higher values as the temperature and voltage increase.

The leakage current value can be decreased by proper selection of materials and production methods; however, cannot be totally eliminated.

The specified leakage current value is measured after the rated voltage of the capacitor is applied at room temperature for a specified time period.

1-5-6 Ripple current

Ripple current is the alternating current flowing through a capacitor. This current causes an internal temperature rise due to power losses in the capacitor. The rated ripple current are specified for an expected temperature rise at rated temperature, under which the capacitor will operate normally during the whole lifetime period.

Generally, the 85°C type capacitors permit a temperature rise of 10°C and have a maximum permitted core temperature of 95°C. The 105°C type capacitors permit a temperature rise of 5°C and have a maximum core temperature of 110°C. Actual maximum permitted core temperatures vary by type and manufacturer.

When operating temperature decreases, the maximum permitted core temperature rises, in the other word, the rated ripple current could be increased when the actual operating temperature is less than the rated temperature. However, too much temperature rise will cause the capacitor to exceed its maximum permitted core temperature of each ambient temperature and fail quickly, operation close to the maximum permitted core temperature will dramatically shorten expected life. The following shows a guide limit of maximum core temperature rise (ΔT) at each ambient temperature for a 105°C maximum rated products.

Table 2

Ambient temperature Ta (°C)	40	55	65	85	105
Guide limit of ΔT (°C)	30	30	25	15	5
Core temperature Ta + ΔT	70	85	90	100	110

In most applications, there is more than one frequency for the ripple current. In this cases, the r.m.s. (root mean square) value of the ripple currents needs to be considered, because currents of all frequencies contribute to the self-heating:

$$I_a = \sqrt{\left(\frac{I_{f1}}{F_{f1}}\right)^2 + \left(\frac{I_{f2}}{F_{f2}}\right)^2 + \dots + \left(\frac{I_{fn}}{F_{fn}}\right)^2}$$

Ia: r.m.s. value of the rated ripple currents

If1 ... Ifn: r.m.s. values of ripple currents at frequencies f1...fn

Ff1...Fn: correction factor for the current at frequencies f1...fn

$F_{fi} = \sqrt{\frac{ESR(f_0)}{ESR(f_i)}}$ where f_0 = reference frequency of the nominal ripple current

The typical frequency multipliers are shown in the specification.

下图中标出的是典型的阻抗频率曲线。谐振频率点出现最小值，该频率点的阻抗与ESR值相等。

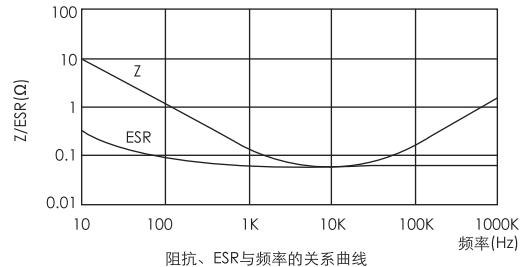


图5

1-5-5 漏电流：

漏电流即是在施加了电压后流经电容器的直流电流。电流值与施加的电压，充电时间和电容器的温度有关。温度升高、电压升高都会使漏电流增大。

漏电流的值可以通过合适的材料和生产方式来加以降低，但它不能被完全消除。

漏电流规格值是在室温条件下和规定的时间内对电容器施加了额定电压之后测得的。

1-5-6 纹波电流

纹波电流即是在电容器内流过的交流电流。由于电容器内的功率损耗，纹波电流会使电容器内部产生一个温升。为了使电容器在寿命周期内正常工作，每个电容器都规定了一个额定工作温度下的额定纹波电流，从而限制其内部温升。

通常85°C的电容器允许的最高温升为10°C，即芯包中心最高允许温度为95°C；105°C的产品，允许的最高温升为5°C，芯包中心最高允许温度可到110°C。不同种类电容和不同制造厂家，实际的允许纹波电流也有所不同。

当工作温度下降时，中心最大允许温升可以增大，也就是说，当实际工作温度小于额定温度时，电容器的额定纹波电流可以上升。然而，过大的温升会导致电容器内部温度超出各环境温度下的最大允许温度而快速失效，工作时的内部温度太接近最大允许温度将严重缩短电容器的预期寿命。下表给出了额定温度为105°C的产品在各环境温度下的最大允许温升 (ΔT)。

表2

环境温度 Ta (°C)	40	55	65	85	105
最大温升 ΔT (°C)	30	30	25	15	5
中心温度 Ta + ΔT	70	85	90	100	110

在多数应用场合，纹波电流的频率不止一个。这种情况下，必须考虑纹波电流的均方根值，因为电容器的自身发热是由所有频率的纹波电流共同引起的：

$$I_a = \sqrt{\left(\frac{I_{f1}}{F_{f1}}\right)^2 + \left(\frac{I_{f2}}{F_{f2}}\right)^2 + \dots + \left(\frac{I_{fn}}{F_{fn}}\right)^2}$$

Ia: 纹波电流的均方根值

If1 ... Ifn: 在频率f1...fn下的纹波电流均方根值

Ff1...Fn: 在频率f1...fn时的纹波电流修正系数

$F_{fi} = \sqrt{\frac{ESR(f_0)}{ESR(f_i)}}$ 此处 f_0 = 标称纹波电流的参考频率

典型频率的纹波电流修正系数已在具体规范中列出。

1-5-7 Rated Voltage

Rated voltage is the maximum peak voltage including ripple voltage that may be applied continuously between the terminals of the capacitor over the specified temperature range. When a ripple current is applied to the capacitor, the sum of the peak ripple voltage and the bias DC voltage should not exceed the rated voltage, namely

$$U_{IP} + U_B \leq U_R, \text{ where:}$$

U_{IP} : peak ripple voltage

U_B : bias DC voltage

U_R : rated voltage

Capacitors with higher rated voltage could replace the lower rated voltage capacitors as long as case size and electrical performances are also compatible.

1-5-8 Recovery Voltage (Dielectric Absorption)

After charging and then discharging aluminum electrolytic capacitors, a voltage between the two terminals will appear after some time. This voltage may reach levels of 15 ~ 25% of the originally applied voltage and it is called recovery voltage. Its existence is related to the phenomenon of dielectric absorption.

Once the recovery voltage is present, sparks may scare the workers during assembly, and low-voltage components (CPU, memory, etc.) may be affected. Measures to prevent this are to discharge the accumulated electric charge by a resistor of about 100Ω to $1k\Omega$ before usage, or to ship out the capacitors with short-circuited terminals, e.g. by covering them with an aluminum foil or a conductive plastic cover at the production stage. Please consult us for adequate procedures.

2. To calculate balance resistance when connecting in series

In order to use capacitors at higher voltages than rated voltage it is necessary to connect them in series. Due to differences in leakage currents between individual capacitors, parallel resistors for each capacitor may be required, cf. Fig6.

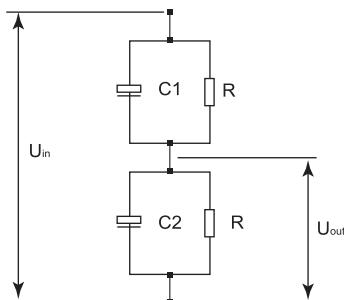


Fig.6

The current IR through the resistor R must be larger than the leakage current in order to control the even split of the voltage. If we suppose the leakage current IL to be $0.003CU$ (normally it is considerably less than this), and let IR be five times larger than IL , then the value of the balancing resistor R can be calculated by the following equation:

$$R = U_c / (5 \times I_L) = U_c / 0.015 C U_c = 1 / 0.015 C$$

(Unit: R —Ohm; U_c —Volt; C —Frad)

Example: calculation of the value of the balancing resistor in case of connecting two CD_293_BZ, 400V, 330 μ F capacitors in series.

$$R = 1 / 0.015 C = 1 / (0.015 \times 330 \times 10^{-6}) = 202 \text{ k}\Omega$$

1-5-7 额定电压:

额定电压是在整个温度范围内可以连续施加在电容器两个端子上的包括纹波电压在内的最高峰值电压。当电容器上施加纹波电流时, 纹波电压峰值与偏置直流电压的叠加值应不大于电容器的额定电压, 即

$$U_{IP} + U_B \leq U_R, \text{ 此处:}$$

U_{IP} : 纹波电压峰值

U_B : 偏置直流电压

U_R : 额定电压

只要壳号电性能是一致的, 那么额定电压较高的电容器均可代替额定电压较低的电容器。

1-5-8 再生电压 (介质吸收)

电容器充电后将电放掉, 过一段时间端子间又会产生电压, 电压值能够达到原先施加电压的15~25%, 这个电压被称为再生电压, 其存在与介质吸收现象有关。

一旦出现再生电压, 产生的打火会惊吓到装配线的工人, 低压部件 (如CPU、内存等) 可能会受到影响。预防的措施是在使用前用 $100 \sim 1k\Omega$ 的电阻将电容器上累积的电荷放掉, 或者是在运输时把电容器端子短路起来, 比如, 生产时在电容器上覆盖一张铝箔或导电塑料盖。如需了解更多细节, 请与我们联系。

2. 电容器串联均衡电阻计算:

为了在高于额定电压的更高电压下使用电容器, 必须将其进行串联。由于每个电容器的漏电流不同, 因此就需要在每个电容器上并联电阻。如图6。

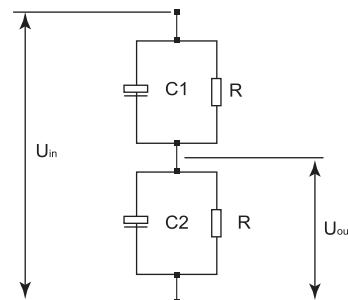


图6

流过电阻R的电流 IR 必须远大于电容器的漏电流, 以便控制电压的均等分布。假定流过电阻R的电流为电容器漏电流的5倍, 而电容器的稳定漏电流 IL 设定为 $0.003CUC$ (实际漏电流小于该值), 则均压电阻的计算公式为:

$$R = U_c / (5 \times I_L) = U_c / 0.015 C U_c = 1 / 0.015 C$$

(单位: R — Ω ; U_c — V ; C — F)

例: 计算2只CD293 400V330 μ F电容器串联时的均压电阻值。

$$R = 1 / 0.015 C = 1 / (0.015 \times 330 \times 10^{-6}) = 202 \text{ k}\Omega$$

3. About the Life of an Aluminum electrolytic Capacitor

3-1 Definition and the test conditions of the lifetime

Lifetime is the answer to the question "How long will the capacitor survive in my application?" The end of the lifetime is reached when certain parameters exceed pre-defined threshold values. It is common practice to allow a certain portion of species to be outside of the limits (outlier percentage). A deviation of certain parameters from pre-defined ranges does not mean a total loss of the capacitor's function, but the design of the application should be done in a way to ensure to function properly even under these unfavorable conditions.

In addition to the more practically oriented "useful life" figure, Jianghai also publishes well-defined specifications of "load life" and "endurance" to increase the transparency for the end user. Shelf life test results are also provided to give an indication of the chemical stability of the electrolytic capacitors and to complete the full picture of each capacitor series (Table 3). When comparing lifetime data for capacitors from different manufacturers, please note that other definitions may apply – even if the same terms are used.

3. 铝电解电容器的寿命

3-1 寿命的定义和测试条件

使用寿命是对下面这个问题的回答：“在我的应用过程中，电容器能保持多长时间不失效？”当某些参数超出了预先的规定值时，即可认为是达到了寿命的终点。但一般说来，实际使用时某些指标超标（某种比例的异常值）是允许的。也就是说，某一参数偏离了预先规定的范围，并不意味着电容器的功能已全部丧失，但是在根据应用要求进行设计时，必须要确保即使在电容器参数超标的不利条件下，设备也能正常工作。

除了较为实用的“使用寿命”数据外，江海还标出了明确的“负载寿命”和“耐久性”指标，以增加对最终用户的透明度。同时还提出了“储存寿命”的测试结果，以表明电解电容器的化学稳定性，并对每个系列的电容器作出了完整的描述（表3）。请注意，当与其他制造商进行寿命数据比较时，即使对于相同的名称，也应同时提供其他具体的定义。

	Useful Life 使用寿命		Load Life 负载寿命	Endurance Test 耐久性测试	Shelf Life 储存寿命
Lifetime 寿命	7000h	> 200000h	5000h	5000h	1000h
Leakage Current 漏电流	Not more than specified value 不超过规定值		Not more than specified value 不超过规定值	Not more than specified value 不超过规定值	Not more than specified value 不超过规定值
Capacitance Change 容量变化	Within $\pm 30\%$ of initial value 初始值的 $\pm 30\%$ 以内		Within $\pm 20\%$ of initial value 初始值的 $\pm 20\%$ 以内	Within $\pm 20\%$ of initial value 初始值的 $\pm 20\%$ 以内	Within $\pm 20\%$ of initial value 初始值的 $\pm 20\%$ 以内
Dissipation Factor 损耗	Not more than $\pm 300\%$ of specified value 不超过规定值的 $\pm 300\%$		Not more than $\pm 200\%$ of specified value 不超过规定值的 $\pm 200\%$	Not more than $\pm 130\%$ of specified value 不超过规定值的 $\pm 130\%$	Not more than $\pm 200\%$ of specified value 不超过规定值的 $\pm 200\%$
Condition 条件: Applied Voltage 施加电压 Applied Current 施加电流 Applied Temperature 施加温度	UR IR 105°C	UR 1.6 \times IR 40°C	UR IR 105°C	UR IR=0 105°C	UR IR=0 105°C After test: UR to be applied for 30min, >24h before measurement. 试验后施加电压 UR30分钟，过24小时后测试。

Table 3: Full definition of test conditions and allowed ranges

表3 测试条件和允许范围的完整定义

Definitions and terms that are used by Jianghai to describe the lifetime:

1) Useful life

The useful life test procedure comes close to the actual operating conditions in the application: in addition to the d.c. bias voltage and the presence of the upper category temperature, a ripple voltage is superimposed that causes additional thermal stress by self-heating. The test is terminated when 1% of the items under test are outside of the specified parameter limits.

2) Load Life

The load life test has similar test conditions like the useful life test, but the acceptance criteria are stricter than for the useful life test. Additionally, all of the items have to fulfill the test criteria.

江海描述电容器寿命所用的定义和条件:

1) 使用寿命:

使用寿命的测试步骤与应用中的实际操作条件相似：除了直流偏压和上限温度之外，还叠加了一个纹波电压，由于自身发热，这个电压会引起额外的热应力。当有1%的被测产品的指标参数超过极限值时，该测试终止。

2) 负荷寿命

负载寿命测试的条件与使用寿命的测试条件相仿，但接受标准比使用寿命测试更为苛刻。另外，所有被测产品均应达到测试标准。

3) Endurance

The method for conducting an endurance test is described in the IEC60384-4 standard: the capacitors are operated at their rated voltage and at their upper category temperature and the time course of their electrical parameters (capacitance, ESR, leakage current) is observed until certain thresholds are exceeded. All of the items under test have to fulfill the test criteria.

4) Shelf Life

A good indicator to assess the chemical stability of electrolytic capacitors is the "shelf life". As opposed to the regular storage of capacitors at moderate temperatures, the shelf life test is a demanding accelerated life test that subjects the test specimens for a pre-defined period to their upper category temperature without any voltage applied. Without any voltage applied, the capacitor cannot benefit from any self-healing during the test – this particular feature makes the shelf life test quite tough. Vital parameters like leakage current, capacitance, and dissipation factor must stay within predefined limits after the test. A high numerical value of the shelf life is a good indicator for chemical stability, high purity of the materials and an advanced production quality.

3-2 lifetime Estimation of the Aluminum electrolytic capacitor

3-2-1 Self-heating of the aluminum electrolytic capacitor during operation.

During operation, the ripple current flowing through the aluminum electrolytic capacitor will generate heat due to the series equivalent resistance(ESR) of the capacitor. The generated heat will be:

$$P=I^2R \dots \dots \dots (1)$$

Where I: Ripple current (Arms)

R: ESR (Ω)

The heat will cause a core temperature rise of the capacitor as below:

$$\Delta T = \frac{I^2 \cdot R}{A \cdot H} \dots \dots \dots (2)$$

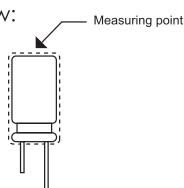
Where ΔT : Temperature increase in the capacitor core (deg.)

I: Ripple current (Arms)

R: ESR (Ω)

A: Surface area of the capacitor (cm^2)

H: Radiation coefficient (Approx. $1.5 \sim 2.0 \times 10^{-3} W/cm^2 \times ^\circ C$)


The above equation (2) shows that the temperature of a capacitor increase in proportion to the square of the applied ripple current and ESR, and in inverse proportion to the surface area. Therefore, the amount of the ripple current determines the heat generation, which affects the life. The value of permissible ΔT varies depending on the capacitor types and operating conditions. The usage is generally desirable as ΔT remains less than $10^\circ C$ for $85^\circ C$ products and $5^\circ C$ for $105^\circ C$ products and higher temperature products at their rated temperature.

In practice, since it is not so easy to measure the core temperature for the small size capacitors, the measurement of the surface temperature at the can bottom provides a good approximation of the core temperature value for radial and snap-in capacitors with can sizes up to 35 mm in diameter. The factors given below in table 4 can be used to estimate the core temperature rise based on the surface temperature rise.

Case diameter	~10	12.5~16	18	22	25	30	35
Core/Surface	1.1	1.2	1.25	1.3	1.4	1.6	1.65

Table 4: core temperature rise multipliers for various can diameters

The measuring point for temperature increase due to ripple current is shown below:

3) 耐久性测试

进行耐久性测试的方法已在IEC60384-4标准中做了描述。对所有的电容器施加额定电压，并置于上限温度中。在整个测试时段中观察它们的电参数（容量、ESR、漏电流）情况，直至某些参数超出极限值。所有被测试电容器均应达到测试标准。

4) 储存寿命

用来评估电解电容器化学稳定性的最好办法就是进行储存寿命测试。与在常温下进行常规储存不一样的是，这种储存寿命测试是一种要求很高的加速寿命测试方法；在不加电压的情况下，将测试样品在上限温度条件下放置规定的时间。不加电压，电容器在测试过程中也就无法得到自愈——所以，这一特点使储存寿命测试变得十分严酷。测试后诸如漏电流、容量、损耗等关键参数均必须保持在规定的极限范围内。储存寿命时间长则表明了电容器有较好的化学稳定性、材料的纯度高、生产技术先进。

3-2 铝电解电容器的寿命估算

3-2-1.铝电解电容器工作时的自身发热

在工作时，由于电容器内部存在内阻（ESR），流过的纹波电流会引起电容器的发热。产生的热量可由下式计算

$$P=I^2R \dots \dots \dots (1)$$

I: 纹波电流 (Arms)

R: 等效串联电阻 (Ω)

$$\Delta T = \frac{I^2 \cdot R}{A \cdot H} \dots \dots \dots (2)$$

发热会引起电容器中心的温升，表示如下：

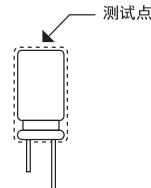
其中， ΔT : 电容器中心的温升 ($^\circ C$)

I: 纹波电流 (Arms)

R: ESR (Ω)

A: 电容器的表面积(cm^2)

H: 散热系数($1.5 \sim 2.0 \times 10^{-3} W/cm^2 \times ^\circ C$)


上面公式 (2) 显示电容器的温度上升与纹波电流的平方以及等效串联电阻ESR成正比，与电容器的表面积及散热系数成反比，因此，纹波电流的大小决定着产生热量的大小，从而影响其使用寿命，电容器的类型以及使用条件决定了可允许的 ΔT 值的大小，一般情况下， $85^\circ C$ 产品， $\Delta T \leq 10^\circ C$ 。 $105^\circ C$ 或更高温度产品 $\Delta T \leq 5^\circ C$ 。

实际应用中，由于测试小尺寸电容器的中心温度并不是很容易，因此引线式电容器和35mm以下的Snap-in电容器，中心的温升可以通过测试电容器底部温升来近似得到。下表4可以用来根据表面温升估算中心温升。

直径	~10	12.5~16	18	22	25	30	35
中心温升/表面温升	1.1	1.2	1.25	1.3	1.4	1.6	1.65

表-4 不同直径电容器中心温升系数

下图表示纹波电流引起的温升的测量点

For larger can sizes snap-in and screw type capacitors, to get more accurate results, a direct measurement of the core temperature by means of a thermocouple is recommended.

Jianghai supplies capacitors with pre-mounted thermocouple for evaluation purposes on request.

3-2-2 Estimation calculation of lifetime

3-2-2-1 The life expectancy formula considering the capacitor core temperature and the applied voltage will be:

$$L = L_0 \times 2^{\left(\frac{T_{hmax}-T_h}{10}\right)} \times \left(\frac{U_R}{U_A}\right)^n \quad \dots \dots \dots (3)$$

Wherein, L_0 : Life at the rated temperature with the rated ripple current (h)

T_{hmax} : Permissible Maximum hot-spot temperature (°C)

T_h : Actual hot-spot temperature (°C)

U_R : Rated voltage(V)

U_A : Actual applied voltage(V)

n : exponent

For small size radial type capacitors $n=0$; for medium and large size capacitors, $n=2.5$, the actual working voltage is defined as: $0.6 U_R \leq U_A \leq U_R$

Operating voltage below $0.6U_R$ is considered to be $0.6U_R$ in the calculation.

3-2-2-2 The life expectancy formula considering the ambient temperature, the ripple current and applied voltage will be:

$$L = L_0 \times 2^{\left(\frac{T_0-T}{10}\right)} \times K \left[1 - \left(\frac{I}{I_0}\right)^2\right] \times \frac{\Delta T_0}{10} \times \left(\frac{U_R}{U_A}\right)^n \quad \dots \dots \dots (4)$$

Wherein, L_0 : Life at the rated temperature with the rated ripple current (h)

T_0 : Rated ambient temperature (°C)

T : Actual ambient temperature (°C)

K : Ripple acceleration factor

($K=2$, if within allowable ripple current)

($K=4$, if exceeding allowable ripple current)

I_0 : Rated ripple current at the rated ambient temperature(Arms)

I : Actual applied ripple current (Arms)

ΔT_0 : Temperature rise at capacitor core at rated temperature (°C)

U_R : Rated working voltage(V)

U_A : Actual working voltage(V)

n : exponent, for small size radial type capacitors $n=0$; for medium and large size capacitors, $n=2.5$ the actual working voltage is defined as:

$0.6U_R \leq U_A \leq U_R$

Operating voltage below $0.6U_R$ is considered to be $0.6U_R$ in the calculation.

Note: The frequency of the actual ripple current should be consistent with that of rated ripple current.

3-2-2-3 The life expectancy formula of Axial&Crown aluminum electrolytic capacitors

$$L = L_0 \times 2^{\left(\frac{T_0-T}{C}\right)} \quad \dots \dots \dots (5)$$

Wherein, L : Theoretical lifetime at actual operating temperature

L_0 : Lifetime at rated operating temperature

T : Actual operating temperature

T_0 : Rated operating temperature

C : Temperature acceleration factor, experienced value is 10~12

Expected lifetime is a statistical value calculated on the basis of the experience and on theoretical evaluations. The above formula is only considered as a theoretical reference. Please consult our technical department in case that there is some doubts during calculation or further information about the specific products need to be acquired.

The life expectancy formula shall in principle be applied to the temperature range between the ambient temperature of +40°C and maximum allowable working temperature. The expected life time shall be about fifteen years at maximum as a guide in terms of deterioration of the sealant.

对大尺寸的snap-in和screw电容器, 为了使测试结果更精确, 建议使用热电偶直接测量中心温度。

江海可以根据客户的要求提供预先埋好热电偶的电容器用于产品评估测试。

3-2-2 寿命估算

3-2-2-1 基于电容器中心温度和施加的工作电压的寿命计算公式:

$$L = L_0 \times 2^{\left(\frac{T_{hmax}-T_h}{10}\right)} \times \left(\frac{U_R}{U_A}\right)^n \quad \dots \dots \dots (3)$$

其中, L_0 : 额定温度和额定纹波电流下的寿命

T_{hmax} : 中心最大允许温度(°C)

T_h : 实际中心温度(°C)

U_R : 额定电压 (V)

ΔU_A : 实际工作电压 (V)

n : 电压系数

对小尺寸引线式电容器, $n=0$; 对中等尺寸和大尺寸电容器, $n=2.5$ 实际工作电压规定如下:

$0.6U_R \leq U_A \leq U_R$

工作电压小于 $0.6U_R$ 时, 计算时取 $0.6U_R$ 。

3-2-2-2 考虑环境温度、纹波电流和工作电压的寿命计算:

$$L = L_0 \times 2^{\left(\frac{T_0-T}{10}\right)} \times K \left[1 - \left(\frac{I}{I_0}\right)^2\right] \times \frac{\Delta T_0}{10} \times \left(\frac{U_R}{U_A}\right)^n \quad \dots \dots \dots (4)$$

其中, L_0 : 额定温度和额定纹波电流下的寿命 (h)

T_0 : 额定环境温度 (°C)

T : 实际环境温度 (°C)

K : 纹波电流加速系数

(纹波电流在允许范围内: $K=2$; 纹波电流超出允许范围: $K=4$)

I_0 : 额定工作温度下的额定纹波电流 (Arms)

I : 实际施加的纹波电流 (Arms)

ΔT_0 : 额定工作温度下电容器中心温升 (°C)

U_R : 额定工作电压 (V)

U_A : 实际工作电压 (V)

n : 电压系数

对小尺寸引线式电容器, $n=0$; 对中等尺寸和大尺寸电容器, $n=2.5$ 实际工作电压规定如下:

$0.6U_R \leq U_A \leq U_R$

工作电压小于 $0.6U_R$ 时, 计算时取 $0.6U_R$ 。

注: 实际纹波电流的频率须与额定纹波电流的频率保持一致。

3-2-2-3 轴向/皇冠铝电解电容器寿命计算公式

$$L = L_0 \times 2^{\left(\frac{T_0-T}{C}\right)} \quad \dots \dots \dots (5)$$

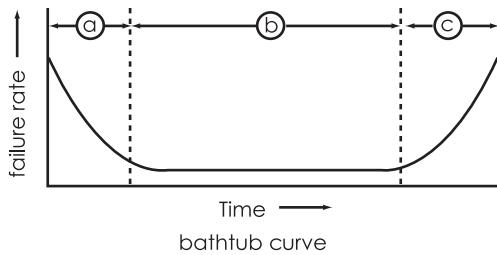
其中, L : 实际工作温度下的理论寿命

L_0 : 额定工作温度下的工作寿命

T : 实际工作温度

T_0 : 额定工作温度

C : 温度加速系数, C 值一般取10~12


预期寿命是基于经验和理论而计算出的一个统计值, 以上公式仅是一个理论参考。如果在计算中存在疑问或想了解更多关于具体产品的信息, 请咨询我们的技术部门。

寿命的推算公式, 原则上适用于周围环境温度为+40°C到最高工作温度范围内, 但从封口材料老化这个角度考虑, 实际的预期寿命原则上最大为15年。

4. Reliability

4-1 The bathtub curve:

Aluminum electrolytic capacitors feature failure rates shown by the following bathtub curve.

A Infant failure period

This is a period during which failures are caused by deficiencies in design, structure, manufacturing process or severe misapplications. Such failures occur soon after the components are exposed to circuit conditions. In aluminum electrolytic capacitors, these failures are either corrected through aging process reforming or repairing a damaged oxide layer, or found by the aging process, removed by the sorting process, and thus do not reach the field.

Infant failures due to capacitor misapplication such as inappropriate ambient conditions, over-voltage, reverse voltage or excessive ripple current can be avoided with proper circuit design and installation.

B Useful life period

This is a random failure period during which the failure rate is the lowest. These failures are not related to operating time but to application conditions. During this period, non-solid aluminum electrolytic capacitors show a slow decrease in capacitance and a slow increase in $\tan\delta$ and ESR, which are caused by a small loss of electrolyte, and feature fewer catastrophic failures than semiconductors and solid tantalum capacitors.

C wear-out failure period

This is a period during which the properties of a component extremely deteriorate, and the failure rate increases with time. Non-solid aluminum electrolytic capacitors end their useful life during this period.

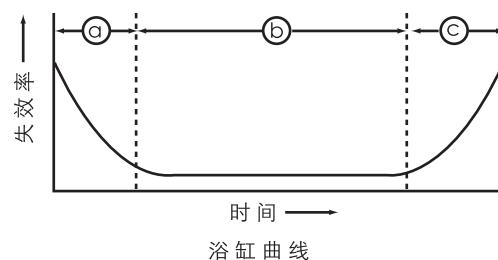
4-2. Failure types:

The two types of failures are classified as catastrophic failures and wear-out failures as follows,

① Catastrophic failure

Like a short circuit or open circuit failure, this is a failure mode which destroys the function of the capacitor.

② Wear-out failure


This is a failure mode resulted by the gradual deterioration of the capacitor electrical parameters. The criteria for judging the failures varies with application and design factors.

Capacitance decrease and $\tan\delta$ increase are caused by the loss of electrolyte in the wear-out failure period. This is due primarily to loss of electrolyte by diffusion (as vapor) through the sealing material. Gas molecules can diffuse out through the material of the end seal. If the electrolyte vapor pressure within the capacitor is increased, by high temperatures for example, the diffusion rate is increased. Swelling of the seal material by electrolyte vapor pressure may also occur at elevated temperature. This swelling may further enhance diffusion and mechanically weaken the seal.

4. 可靠性

4-1 浴缸曲线

铝电解电容器的失效效率特征可以用下图的浴缸曲线来描述

A 早期失效期

早期失效阶段是由于在设计、结构、制造工艺中存在缺陷或由于严重的使用不当而造成产品失效的阶段。这种失效在元件通电后不久就会被发现。在铝电解电容器中，这种失效要么通过老化过程中对损坏的氧化膜重新化成或修补得以避免，要么在老化过程中被发现，在测试分选时被剔除，因此不会进入使用领域。

由于使用环境不当、过电压、施加反向电压或纹波电流过大等使用不当引起的早期失效，可以通过适当的电路设计和安装方法加以避免。

B 使用寿命期

这是一个随机的失效阶段，通常该阶段的失效概率很低。这种失效与工作环境有关，与工作时间关系不大。在此阶段，非固体电解质电容器表现为容量缓慢下降，损耗和ESR逐渐上升，这是由于电解液量逐渐减少引起的，很少会出现半导体和固体钽电容器那种致命性的失效。

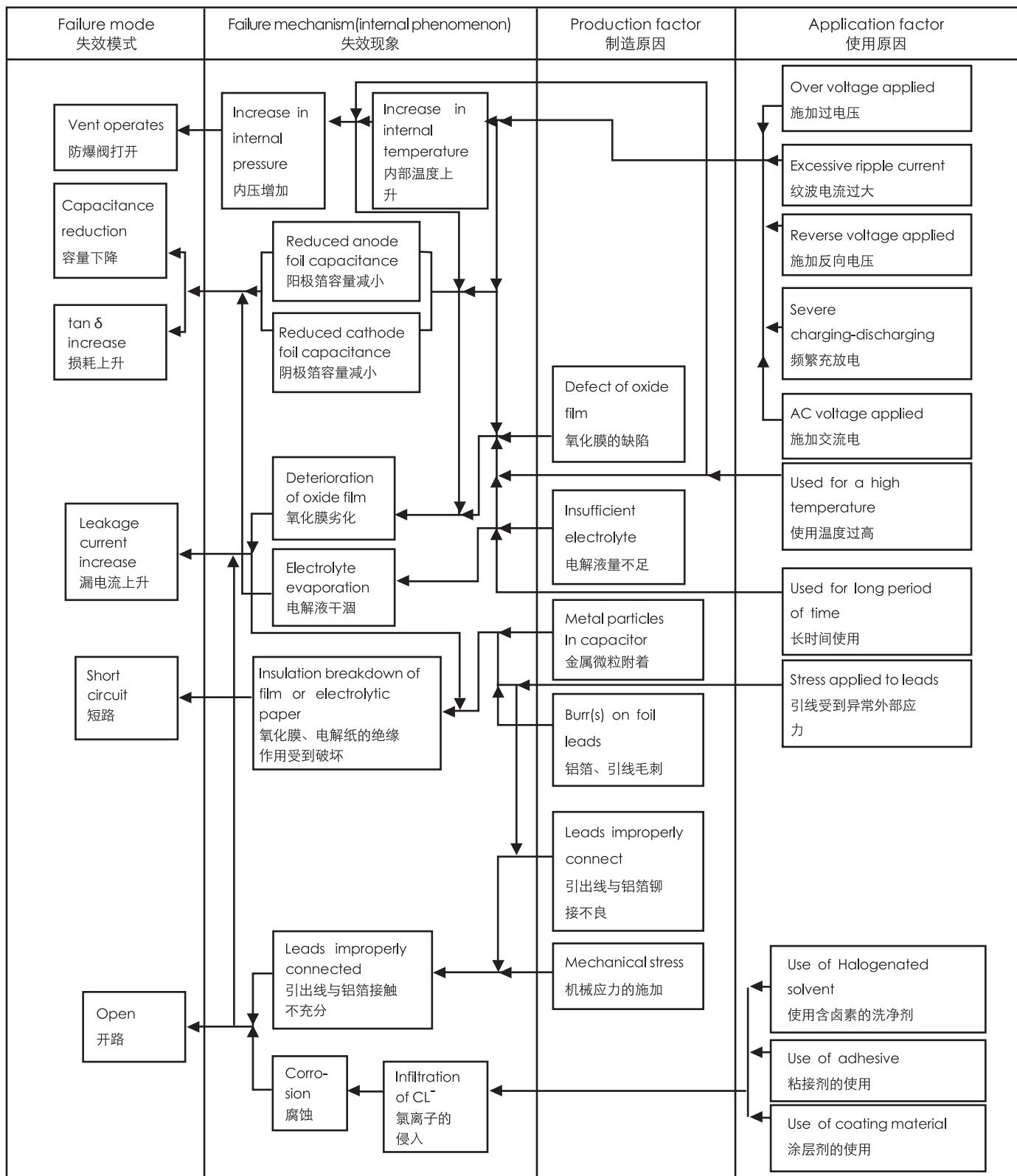
C 耗损失效期

该阶段，元件的性能急剧恶化，失效率随时间而上升。非固体铝电解电容器在此阶段结束其使用寿命。

4-2. 失效类型:

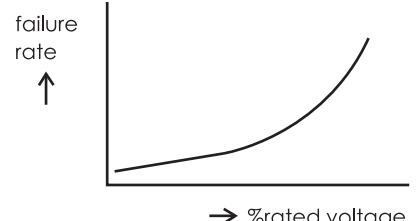
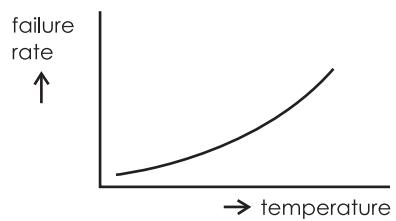
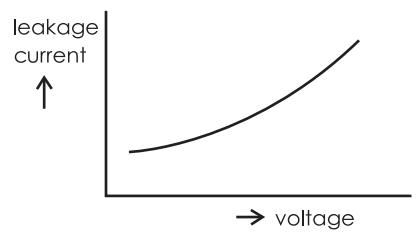
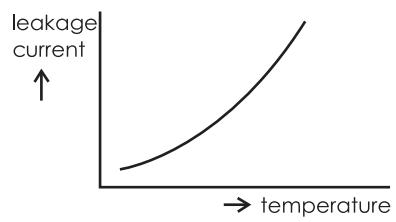
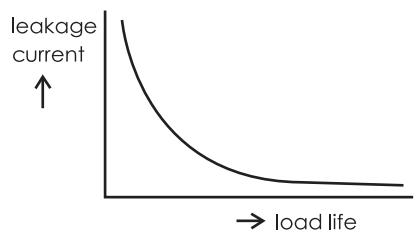
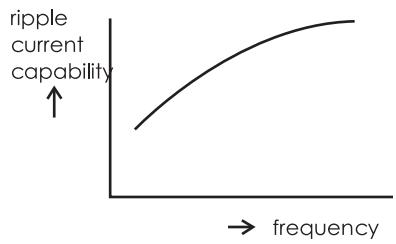
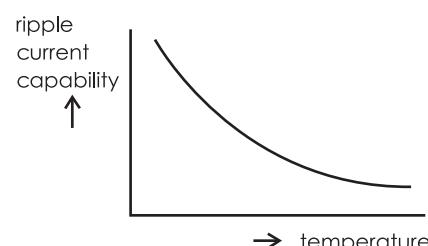
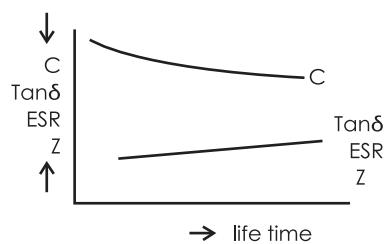
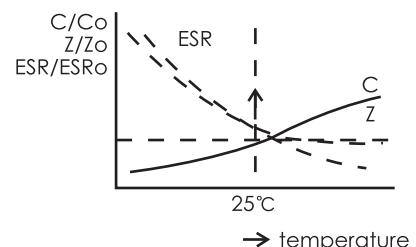
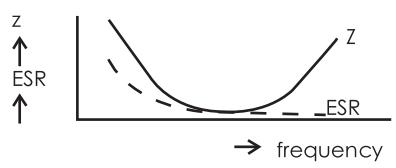
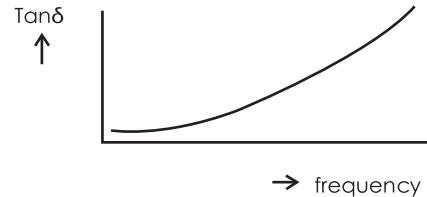
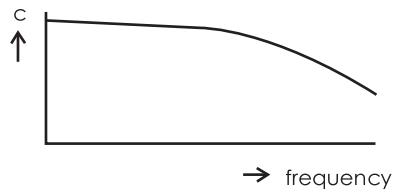
失效的类型分为两种，致命性失效和耗损性失效。

① 致命性失效


诸如短路和开路失效，这种失效模式破坏了电容器的使用功能

② 耗损性失效

这是一种由于电容器电参数逐渐恶化而造成的失效，判断失效的标准也随应用和设计参数的不同而改变。













耗损失效阶段，由于电解液的减少，容量下降，损耗角正切上升。这是由于电解液以蒸汽形式从封口材料散失而造成的，气体分子能够穿过封口材料而散失，如果由于高温等原因使电容器内部蒸汽压力上升，则扩散的速度也会上升。温度上升造成的电解液蒸汽压力也会导致封口材料的膨胀，这种膨胀可能进一步加强电解液的渗透，同时削弱密封作用。

4-3 Typical failure modes and factors of aluminum electrolytic capacitors
铝电解电容器失效模式及原因分析

5. Electrical behaviour 电气特性

Characteristics of electrical capacitors vary with temperature, time, and applied voltage.
电容器的电气特性与温度, 时间, 以及印加电压的关系

6. Application Guidelines

6-1. Circuit Design

(1) Please make sure the application and mounting conditions to which the capacitor will be exposed are within the conditions specified in the catalog or alternate product specification (Referred as to specification here after).

(2) Operating temperature and applied ripple current shall be within the specification.

The capacitor shall not be used in an ambient temperature which exceeds the operating temperature specified in the specification.

Do not apply excessive current which exceeds the allowable ripple current.

(3) Appropriate capacitors which comply with the life requirement of the products should be selected when designing the circuit.

(4) Aluminum electrolytic capacitors are polarized. Make sure that no reverse voltage or AC voltage is applied to the capacitors. Please use bi-polar capacitors for a circuit that can possibly see reversed polarity.

Note: Even bi-polar capacitors can not be used for AC voltage application.

(5) For a circuit that repeats rapid charging/discharging of electricity, an appropriate capacitor that is capable of enduring such a condition must be used. Welding machines and photoflash are a few examples of products that contain such a circuit. In addition, rapid charging/discharging may be repeated in control circuits for servomotors, in which the circuit voltage fluctuates substantially.

For appropriate choice of capacitors for circuit that repeat rapid charging/discharging, please consult us.

(6) Make sure that no excess voltage (that is, higher than the rated voltage) is applied to the capacitor.

Please pay attention so that the peak voltage, which is DC voltage overlapped by ripple current, will not exceed the rated voltage.

In the case where more than 2 aluminum electrolytic capacitors are used in series, please make sure that applied voltage on each capacitor will be lower than rated voltage and the voltage will be applied to each capacitor equally using a balancing resistor in parallel with the capacitors.

(7) Outer sleeve of the capacitor is not guaranteed as an electrical insulator. Do not use a standard sleeve on a capacitor in applications that require the electrical insulation. When the application requires special insulation, please contact us for details.

(8) Capacitors may fail if they are used under the following conditions:

① Environmental (climatic) conditions

(a) Being exposed to water, high temperature & high humidity atmosphere, or condensation of moisture.

6. 铝电解电容器应用指南:

6-1. 电路设计

(1) 首先, 请确定电容器的使用和安装条件必须符合样本所供选择的产品规格中所规定的条件;

(2) 工作温度和施加的纹波电流必须符合规范中的要求。

① 电容器使用时的环境温度不能超过产品规格中规定的工作温度

② 施加的纹波电流不得超过允许值

(3) 在设计电路时, 必须选择符合其使用寿命要求的合适的电容器

(4) 铝电解电容器是有极性的, 因此要确保不对电容器施加反向电压或交流电压, 在可能会出现反向电压的场合, 建议使用双极性电容器。

注意: 即使是双极性电容器, 也不能应用在交流电压的场合。

(5) 对于需要反复充放电的电路而言, 那就必须使用能承受这种工作环境的合适电容器。电焊机、闪光灯等设备就是如此。此外, 在伺服电机等控制电路中, 也会出现反复的快速充放电, 电路中的电压波动很大。如果需选择具有快速充放电要求的电容器, 请与我们联系。

(6) 确保电容器不能在过压状态下工作 (即高于额定电压)

① 请注意峰值电压, 即由直流电压叠加纹波电流的电压, 不能超过额定电压;

② 在要串联使用2个以上电容器的场合, 施加在每一个电容器上的电压要低于额定电压, 并用均衡电阻与每个电容器并联, 使电压平均地施加到每个电容器上。

(7) 电容器外面的套管不能保证做绝缘之用, 所以在需要将其作为电绝缘的应用场合, 这些电容器不能使用一般标准的套管。假如你的应用场合需要特殊绝缘的话, 请与我们联系了解详细情况。

(8) 在下列条件下使用的电容器很可能导致失效

① 环境条件

a. 接触水, 高温高湿度气候, 或易产生冷凝水的地方;

(b) Being exposed to oil or an atmosphere that is filled with particles of oil.

(c) Being exposed to salty water or an atmosphere that is filled with particles of salt.

(d) In an atmosphere filled with toxic gasses (such as hydrogen sulfide, sulfuric acid, nitrous acid, chlorine, bromine, methyl bromide, ammonia, etc.)

(e) Being exposed to direct sunlight, ozone, ultraviolet ray, or radiation

(f) Being exposed to acidic or alkaline solutions

② Under severe conditions where vibration and/or mechanical shock exceed the applicable ranges of the specifications.

(9) When designing a P.C. board, please pay attention to the following:

① Have the hole spacing on the P.C. board match the lead spacing of the capacitor.

② There should not be any circuit pattern or circuit wire above the capacitor pressure relief vent.

③ Unless otherwise specified, the following clearance distances need to be kept above the pressure relief safety vent to ensure its proper operation.

Case Diameter	Clearance Required
6.3~16mm	2mm or more
18~35mm	3mm or more
40mm or more	5mm or more

④ In case the vent side is placed toward P.C. board (such as end seal vented parts), make a corresponding hole on the P.C. board to release the gas if vent is operated. The hole should be made to match the capacitor vent position.

⑤ Screw terminal capacitors must be installed with their end seal side facing up. When you install a screw terminal capacitor in a horizontal position, the positive terminal must be in the upper position.

(10) The main chemical solution of the electrolyte and the separator paper used in the capacitors are combustible. The electrolyte is electrically conductive. When it comes in contact with the P.C. board, there is a possibility of pattern corrosion or short circuit between the circuit pattern which could result in smoking or catching fire.

Do not locate any circuit pattern beneath the capacitor end seal.

(11) Do not design a circuit board with heat generating components placed near an aluminum electrolytic capacitor or on the reverse side of P.C. board under the capacitor.

(12) Electrical characteristics may vary depending on changes in temperature and frequency. Please consider this variation when you design circuits.

(13) When you mount capacitors on the double-sided P.C. boards, do not place capacitors on circuit patterns, otherwise it may causes short circuit on the PCB.

(14) The torque applied on the terminal screws or brackets screws shall be within the range given in the specifications.

(15) When you install more than 2 capacitors in parallel, consider the balance of current flowing through the capacitors. Especially if solid conductive polymer aluminum electrolytic capacitor and a standard aluminum electrolytic capacitor are connected in parallel, special care must be taken.

b. 接触油，或充满油气的地方；

c. 接触盐水，或充满盐尘的地方；

d. 含有有毒气体的场合（如盐酸、硫酸、硝酸、氯、溴、甲基溴、氨等）；

e. 直接暴露在有阳光、臭氧、紫外线或辐射的环境中；

f. 接触酸碱溶液。

② 在震动或机械冲击超过指标规定范围的那些恶劣环境下

(9) 当在设计印刷线路板时，请注意下列事项：

① 电路板上的开孔间距必须与电容器引线的间距相匹配；

② 在电容器的防爆阀上方，不应有任何电路走线图形或导线；

③ 除非另有规定，否则防爆上方应留出下列间隙：

外壳直径	须留间隙
Φ6.3~16mm	≥2mm
Φ18~35mm	≥3mm
Φ40或40mm以上	≥5mm

④ 如果防爆阀是朝着印刷线路板方向的（例如防爆阀在盖板上的电容器），则要在线路板上相应的开一个孔，可使阀打开后的气体排出。这个孔必须对准电容器防爆的位置。

⑤ 安装螺丝终端电容器时，必须将装盖板的面朝上。当水平方向安装螺丝终端电容器时，必须将正极终端放在上面。

(10) 电解液中使用的化学溶液和电容器中的电解纸都是易燃品，而且电解液是导电的，一旦它与电路板接触，就有可能会造成电路板上的走线图形腐蚀，或走线图形之间的短路，最终导致冒烟或起火。

因此，不要在电容器密封位置下方布置任何线路图案。

(11) 在设计线路板时，不要将发热元件布置在靠近电解电容器的地方，也不要在线路板反面电容器的位置安装发热元件；

(12) 温度和频率变化时，电容器的电性能也会变化，所以在设计电路时请考虑这些变化因素；

(13) 当在双面线路板上安装电容器时，不要安装在电路图案上，否则可能会造出线路板的短路；

(14) 施加在终端螺丝或支架螺丝的力矩应符合规格书上规定的值；

(15) 当你并联安装2个以上电容器时，要考虑流经电容器的电流的平衡，特别是当并联固体聚合物铝电解电容器和标准的铝电解电容器时，要给予这方面特别的考虑；

6-2. Mounting

(1) Once a capacitor has been assembled in the set and power applied, even if a capacitor is discharged, an electric potential(recovery voltage) may exist between the terminals.

(2) Electric potential between positive and negative terminal may exist as a result of returned electromotive force, so please discharge the capacitor using a 1 k resistor.

(3) Please confirm ratings before installing capacitors on the P.C. board.

(4) Please confirm polarity before installing capacitors on the P.C. board.

(5) Do not drop capacitors on the floor, nor use a capacitor that was dropped.

(6) Do not damage the capacitor while installing.

(7) Please confirm that the lead spacing of the capacitor matches the hole spacing of the P.C. board prior to installation.

(8) Snap-in type capacitor should be installed tightly to the P.C. board (allow no gap between the P.C. board and bottom of the capacitor).

(9) Please pay attention that the clinch force is not too strong when capacitors are placed and fixed by an automatic insertion machine.

(10) Please pay attention to that the mechanical shock to the capacitor by suction nozzle of the automatic insertion machine or automatic mounter, or by product checker, or by centering mechanism.

(11) Hand soldering.

① Soldering condition shall be confirmed to be within the specification.

② If it is necessary that the leads must be formed due to a mismatch of the lead space to hole space on the board, bend the lead prior to soldering without applying too much stress to the capacitor.

③ If you need to remove parts which were soldered, please melt the solder enough so that stress is not applied to lead.

④ Please pay attention so that solder iron does not touch any portion of capacitor body.

(12) Flow soldering (Wave solder)

① Aluminum capacitor body must not be submerged into the solder bath. Aluminum capacitors must be mounted on the "top side" of the P.C. board and only allow the bottom side of the P.C. board to come in contact with the solder.

② Soldering condition must be confirmed to be within specification.

Solder temperature: $260 \pm 5^\circ\text{C}$, Immersing lead time: 10 ± 1 second, Thickness of P.C. board : 1.6mm.

③ Please avoid having flux adhere to any portion except the terminal.

④ Please avoid contact between other components and the aluminum capacitor.

6-2. 安装

(1) 一旦电容器装上机器，并接通电源，即使电容器已放过电，但是在两个终端之间仍存在一个电位差（再生电压）；

(2) 正极和负极之间的电位差也可能是由返回的电动势所造成的，所以一定要用一只1K电阻实施放电；

(3) 在把电容器装上电路板之前，请首先确认一下其额定值；

(4) 在把电容器装上电路板前，请对极性进行确认；

(5) 不要让电容器掉落到地板上，也不能使用掉到地板上的电容器；

(6) 安装时千万不能损坏电容器；

(7) 安装之前确认一下电容器引线间距是否与线路板的孔距相匹配；

(8) 焊片式电容器要靠线路板安装（电容器的底部和线路板之间不留间隙）；

(9) 当用自动插件机安装和固定电容器时，请注意夹持力不能太大；

(10) 请注意由自动插件机或产品检查仪或中心定位机所产生的振动对电容器的影响；

(11) 手工焊接

① 焊接条件必须符合规范的要求；

② 如果由于引线间距和线路板上的孔距不匹配需要引线成型的话，则必须在焊接前弯好引线，而不能对电容器施加太多的应力；

③ 如需要拆下焊好的电容器，则要让焊锡充分熔化，使引线不受任何应力；

④ 请注意不能让烙铁接触电容器本体；

(12) 波峰焊

① 电容器本体不能浸入锡缸，铝电解电容器必须装在线路板的上面，只允许线路板的反面与焊锡接触；

② 焊接条件必须符合规格书规定的指标值：

焊锡温度小于 $260 \pm 5^\circ\text{C}$ ，引线浸没时间小于 10 ± 1 秒，线路板厚度不小于 1.6mm

③ 除了终端外，其他部分均不能沾上助焊剂

④ 要防止电容器与其他元器件接触

(13) Reflow soldering (SMD only)

① Soldering condition must be confirmed to be within specification.

Pre-heating : Less than 150°C, 90 seconds max. Max. temperature at capacitor top during reflow : 230°C

The duration for over 200°C temperature at capacitor top: 20 seconds max.

The duration from the pre-heat temperature to peak temperature of reflow varies due to changes of the peak temperature.

② The number of reflow time for SMT aluminum electrolytic capacitors shall be one time. If this type of capacitor has to be inevitably subjected to the reflow twice, enough cooling time between the first and second reflow (at least more than 30 minutes) shall be taken to avoid consecutive reflow. Please contact us if you have questions.

(14) Soldering flux, Cleaning agents, Conformal coating&fixing glue

Ionic halides and non-ionic halides are both harmful to the capacitors. When either of these halides infiltrate the capacitor, it causes a chemical reaction that is quite harmful to the capacitors. Use soldering flux, cleaning agents, conformal coating & fixing glue that does not contain any halides. In addition, sulfur is also discovered to be harmful to the capacitor, so avoid using soldering flux, cleaning agents, conformal coating&fixing glue containing sulfur.

(15) Do not tilt lay down or twist the capacitor body after the capacitors are soldered to the P.C. board.

(16) Do not carry the P.C. board by grasping the soldered capacitor.

(17) Please do not allow anything to touch the capacitor after soldering. If P.C. board are stored in a stack, please make sure P.C. board or the other components do not touch the capacitor.

The capacitors shall not be effected by any radiated heat from the soldered P.C. board or other components after soldering.

6-3. In the equipment

(1) Do not directly touch terminal by hand.

(2) Do not short between terminals with conductor, nor spill conductible liquid such as alkaline or acidic solution on or near the capacitor.

(3) Please make sure that the ambient conditions where the set is installed will be free from spilling water or oil, direct sunlight, ultraviolet rays, radiation, poisonous gases, vibration or mechanical shock.

6-4. Maintenance Inspection

Please periodically inspect the aluminum capacitors that are installed in industrial equipment. The following items should be checked:

① Appearance : Remarkable abnormality such as vent operation, leaking electrolyte etc.

② Electrical characteristic: Capacitance, dielectric loss tangent, leakage current, and items specified in the specification.

(13) 回流焊 (适用于SMD)

① 焊接条件必须符合规格书规定的指标值：

预热：小于150°C，最多90秒；回流焊过程中电容器顶部的最高温度为230°C，在电容器顶部超过200°C的时间最多为20秒；从预热温度到回流焊峰值温度的时间随峰值温度的改变而变化。

② 表面贴装用铝电解电容器能承受的回流焊次数是一次，如果这种电容器一定要进行第二次回流焊的话，那么在第一次和第二次回流焊之间要有足够的冷却时间（至少30分钟以上），不能连续进行回流。如有问题请与我们联系。

(14) 助焊剂、清洗剂、三防漆和固定胶

离子态的和非离子态的卤素成分对电容器都是有害的。当任何一种卤素物质渗透入电容器内部，就会发生对电容器极为有害的化学反应。因此，请使用不含任何卤素的焊剂、清洗剂、三防漆和固定胶。此外，硫对于电容器也是有害的，请避免使用含有硫成分的焊剂、清洗剂、三防漆和固定胶。

(15) 电容器焊到线路板上之后，不要将电容器倾倒或扭曲。

(16) 拿线路板时，不要抓住焊好的电容器。

(17) 不要让焊好的电容器碰到其他任何东西。如果要将线路板堆放储存的话，要确保线路板或其他元件不要碰到电容器。电容器不能受焊好的线路板或其他焊好的元器件的热辐射影响。

6-3. 设备中

(1) 不要用手直接接触电容器的终端

(2) 不要用导体在两个终端之间进行短路，也不能把诸如酸碱溶液等导电液体泼近或泼到电容器上。

(3) 要确保安装设备的环境条件要远离水、油、阳光的直接照射，紫外线、辐射、有毒气体、振动或机械冲击。

6-4. 保养检查

请定期检查安装在工业设备中的铝电解电容器必须检查下列内容

① 外观：是否有明显的异常，如防爆阀打开，漏液等；

② 电性能：容量， $\text{tg}\delta$ 、漏电流和规范中规定的项目

6-5. In an Emergency

(1) If you see smoke due to operation of safety vent, turn off the main switch or pull out the plug from the outlet.

(2) Do not bring your face near the capacitor when the pressure relief vent operates. The gasses emitted from that are over 100°C.

If the gas gets into your eyes, please flush your eyes immediately in pure water.

If you breathe the gas, immediately wash out your mouth and throat with water.

Do not ingest electrolyte. If your skin is exposed to electrolyte, please wash it away using soap and water.

6-6. Storage

(1) It is recommended to store capacitors at ambient temperatures from 5°C to 35°C and at relative humidity of 75% or below.

(2) The leakage current of the electrolytic capacitor tends to increase after long time storage, it is suggested to reconfirm the leakage current before use them in case the capacitors are stored for more than 1 year. If necessary, voltage treatment could be performed by connecting a 1KΩ resistor to reduce the leakage current.

(3) Confirm that the environment does not have any of the following conditions:

①Where the capacitors may have the possibility to get water, salt or oil spill.

②The atmosphere is filled with hazardous gases (e.g. hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, bromine, methyl bromide, ammonia,etc.)

③Where the capacitors are exposed to ultraviolet or radioactive rays.

6-7. Use at high altitude

If the capacitors are used at high altitude, such as at mountainous regions or on an aircraft, the air pressure outside the capacitor decreases and causes a difference between the internal pressure and external pressure. However, this low atmospheric pressure is no problem for the capacitor up to an altitude about 10000 meters. Another condition should be noticed is that the ambient temperature decreases with increased altitude, please check the operation of the electronic equipment at such low temperature .

6-8. Disposal

Take either of the following methods in disposing of capacitors.

Make a hole or crush the capacitors(to prevent explosion) before incineration at approved facility.

If incineration is not applicable, hand them over to a professional industrial waste disposal company to dispose according to local laws.

6-5. 在紧急情况下

(1) 如果你看到防爆阀打开后冒出的烟雾, 请立即关掉电源, 将插头从插座上拔下。

(2) 当防爆阀打开时, 不要将脸凑近电容器, 因为从里面散发出来的气体温度可达100°C以上, 如果气体冲进你眼睛的话, 请立即用纯水冲洗眼睛。

如果吸入这种气体的话, 请马上用水清洗眼睛和喉咙。请不要咽下电解液, 如果皮肤接触到了电解液, 请用水和肥皂将它洗净。

6-6. 储存

(1) 建议将电容器储存在5°C~35°C 和相对湿度小于75%的环境中。

(2) 长期储存后电解电容器的漏电流会趋于上升, 因此电容器储存超过1年后使用时建议再次确认其漏电流。必要时可用1KΩ的电阻对其进行电压处理来降低漏电流。

(3) 确认储存环境中不会出现下列情况:

①电容器可能接触到水、盐或油污的环境;

②空气中含有毒酸气 (如硫化氢、硫酸、亚硝酸、氯、溴、甲基溴等)

③电容器暴露于紫外线或放射性射线环境中。

6-7. 高空使用

如果电容器在高空使用, 比如高原地区或飞机上, 外部的空气压力下降, 会导致电容器内外产生压力差。不过, 在10000米以下的高度, 这种外部的低压对电容器来说是没有问题的。另一个应该引起注意的情况是, 随着高度的上升, 外部环境的温度将下降, 请检查这种低温情况下电子设备的工作是否正常。

6-8. 废弃处理

电容器的废弃处理可采用下列任何一种方法进行:

将电容器壳体上打孔或将其压碎 (防止爆炸) 后由合格的工厂进行焚烧。

如果焚烧不可行的话, 请将电容器交给专业的工业废品处理厂按当地法律规定进行处理。